New Marine Sesquiterpenoids and Diterpenoids from the Okinawan Soft Coral Clavularia koellikeri

Kazuo I guchi,* Takashi Fukaya, Akiko Yasumoto, and Kinzo Watanabe
Laboratory of Bioorganic Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, J apan

Recei ved September 2, 2003

Abstract

Six new terpenoids (two maaliane-type sesquiterpenoids, $\mathbf{1}$ and 2, one aromadendrane-type sesquiterpenoid, 3, one noraromadendrane-type sesquiterpenoid, 4, and two neodolabellane-type diterpenoids, 5 and 6) were isolated from the Okinawan soft coral Clavularia koellikeri. The structures of these compounds were determined on the basis of the results of spectroscopic analysis, chemical conversion, and X-ray crystallographic analysis. Compound $\mathbf{6}$ exhibited modest growth-inhibition effect in vitro toward tumor cells.

The Okinawan soft corals of the genus Clavularia comprise a number of structurally unique natural products with various bioactivities. For example, Clavularia viridis produces antitumor prostanoids, clavulones ${ }^{1,2}$ and related compounds, ${ }^{3-6}$ and Clavularia koellikeri contains cytotoxic diterpenoids, kericembranolides. ${ }^{7}$ Recently, we reported the isolation and structural determination of new cembranetype and dolabellane-type diterpenoids from C. koellikeri. 8,9 Further investigation on natural products from C. koellikeri resulted in the isolation of six new terpenoids: two maaliane-type sesquiterpenoids, 1 and 2; one aromaden-drane-type sesquiterpenoid, 3; one noraromadendrane-type sesquiterpenoid, 4; and two neodolabellane-type diterpenoids, 5 and 6 . Their structures were elucidated on the basis of spectroscopic analysis, chemical conversion, and X-ray crystallographic analysis. This paper describes the isolation, structural determination, and bioactivity of these compounds.

Results and Discussion

The MeOH extract of C . koellikeri, collected on a coral reef off Ishigaki Island (Okinawa Prefecture, J apan), was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$ to afford an EtOAcsoluble portion (71.4 g). A part (39.4 g) of the EtOA c-soluble portion was subjected to repeated chromatographic separation and purification to give compounds $\mathbf{1}(2.3 \mathrm{mg}), \mathbf{2}(12.4$ $\mathrm{mg}), \mathbf{3}$ (2.3 mg), $4(2.9 \mathrm{mg}), 5(29 \mathrm{mg})$, and $6(20 \mathrm{mg})$.

The molecular formula of compound $\mathbf{1}$ was found to be $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$ by HREIMS and ${ }^{13} \mathrm{C}$ NMR data (Table 1). The DEPT spectrum showed five methyls, three sp ${ }^{3}$ methylenes, four sp^{3} methines, two sp^{3} quaternary carbons, one sp^{2} methine, and two sp^{2} quaternary carbons. The IR absorptions at 1732 and $1245 \mathrm{~cm}^{-1}$ indicated the presence of an acetoxyl group. The NMR spectra confirmed the presence of a secondary acetoxyl group: $\delta_{\mathrm{H}} 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$ and $4.69(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}, \mathrm{H}-1)$; $\delta_{\mathrm{c}} 21.4\left(\mathrm{COCH}_{3}\right), 75.4$ ($\mathrm{CH}, \mathrm{C}-1$), and $171.0\left(\mathrm{COCH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 (Table 1) also disclosed one olefinic proton at 5.25 (1H, br $\mathrm{s}, \mathrm{H}-3$), one olefinic methyl at $1.74(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$, and two cyclopropyl methine protons at $0.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8$, $9.1 \mathrm{~Hz}, \mathrm{H}-6)$ and $0.60(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.7,9.1 \mathrm{~Hz}, \mathrm{H}-7)$. These spectral data, coupled with the degrees of unsaturation (five), suggested that compound $\mathbf{1}$ was a tricydic sesquiterpenoid with a secondary acetoxyl group.

[^0]
$1 \mathrm{R}=\mathrm{Ac}$
$2 \mathrm{R}=\mathrm{H}$
$7 \mathrm{R}=(R)-2 \mathrm{NMA}$
$8 \mathrm{R}=(S)-2 \mathrm{NMA}$

3

4

5

$6 \mathrm{R}=\mathrm{H}$
$9 \mathrm{R}=(R)-2 \mathrm{NMA}$
$10 \mathrm{R}=(S)-2 \mathrm{NMA}$

Figure 1. Structures of new terpenoids.
After direct ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ correlations were established from the HMQC spectrum, the gross structure of $\mathbf{1}$ was elucidated on the basis of the analysis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC spectra (Figure 2). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed sequences of the correlations from $\mathrm{H}-1$ [4.69 (1H, br d, J $=4.1 \mathrm{~Hz})$] to $\mathrm{H}-3[5.25(1 \mathrm{H}, \mathrm{br} \mathrm{s})]$ and from $\mathrm{H}-5$ [1.84 (1H, m)] to H-9 [1.12 (1H, m), $1.15(1 \mathrm{H}, \mathrm{m})$] and the long-range correlation between $\mathrm{H}-3$ and $\mathrm{H}-15$ [1.74 (3H, br s)], as shown by the bold lines in Figure 2, indicating two partial structures \mathbf{a} and \mathbf{b}. The HMBC correlation from $\mathrm{H}-15$ to $\mathrm{C}-5[35.9(\mathrm{CH})]$ indicated the connectivity between $\mathrm{C}-4$ and C-5. The presence of a dimethyl cyclopropyl group at C-6 and C-7 was exhibited by the HMBC correlations from H-12 [1.07 (3H, s)] to C-11 [18.1 (C)] and C-7 [19.7 (CH)] and from $\mathrm{H}-13[0.96(3 \mathrm{H}, \mathrm{s})]$ to $\mathrm{C}-11$ and $\mathrm{C}-6$ [22.1 (CH)]. The correlations from $\mathrm{H}-1$ to the carbonyl carbon [171.0 (C)] demonstrated the presence of the secondary acetoxyl group at $\mathrm{C}-1$. The connections between $\mathrm{C}-1$ and $\mathrm{C}-10, \mathrm{C}-5$ and $\mathrm{C}-10, \mathrm{C}-9$ and $\mathrm{C}-10$, and $\mathrm{C}-14$ and $\mathrm{C}-10$ were indicated by the correlations from $\mathrm{H}-14[0.88(3 \mathrm{H}, \mathrm{s})]$ to C-1 [75.4 (CH)], C-5, C-9 [31.5 (CH_{2})], and C-10 [34.8 (C)].

The relative configurations of the five successive chiral centers at C-1, C-10, C-5, C-6, and C-7 in 1 were indicated by the following NOE analysis. As shown in Figure 3, NOE

Table 1. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CDCl}_{3}{ }^{\text {a }}$

no.	1		no.	2	
	$\delta_{\text {c }}$	δ_{H}		$\delta_{\text {C }}$	δ_{H}
1	75.4 (CH)	4.69 (1H, br d, 4.1)	1	73.5 (CH)	3.42 (1H, br d, 2.7)
2	$28.8\left(\mathrm{CH}_{2}\right)$	1.99 (1H, m, H ${ }^{\text {a }}$)	2	$31.6\left(\mathrm{CH}_{2}\right)$	1.98 (1H, br d, 18.6)
		2.42 (1H, br d, 19.1, H β)			2.48 (1H, br d, 18.6)
3	116.5 (CH)	5.25 (1H, br s)	3	116.4 (CH)	5.26 (1H, br s)
4	135.7 (C)		4	136.0 (C)	
5	35.9 (CH)	1.84 (1H, m)	5	35.4 (CH)	1.75 (1H, m)
6	22.1 (CH)	0.53 (1H, dd, 7.8, 9.1)	6	22.1 (CH)	0.51 (1H, dd, 7.7, 9.2)
7	19.7 (CH)	0.60 (1H, dt, 2.7, 9.1)	7	19.8 (CH)	0.61 (1H, dt, 2.5, 9.2)
8	$15.4\left(\mathrm{CH}_{2}\right)$	1.48 (1H, m, H ${ }^{\text {a }}$)	8	$15.5\left(\mathrm{CH}_{2}\right)$	1.50 (1H, m)
		1.87 (1H, qd, 8.8, 15.1, H β)			1.90 (1H, m)
9	$31.5\left(\mathrm{CH}_{2}\right)$	1.12 (1H, m, H β)	9	$31.5\left(\mathrm{CH}_{2}\right)$	1.10 (1H, m)
		1.15 (1H, m, H α)			1.22 (1H, m)
10	34.8 (C)		10	35.9 (C)	
11	18.1 (C)		11	18.2 (C)	
12	$28.5\left(\mathrm{CH}_{3}\right)$	1.07 (3H, s)	12	$28.5\left(\mathrm{CH}_{3}\right)$	1.06 (3H, s)
13	$15.5\left(\mathrm{CH}_{3}\right)$	0.96 (3H, s)	13	15.6 ($\left.\mathrm{CH}_{3}\right)$	0.96 (3H, s)
14	$17.7\left(\mathrm{CH}_{3}\right)$	0.88 (3H, s)	14	$18.1\left(\mathrm{CH}_{3}\right)$	0.81 (3H, s)
15	$21.0\left(\mathrm{CH}_{3}\right)$	1.74 (3H, br s)	15	$21.0\left(\mathrm{CH}_{3}\right)$	1.72 (3H, br s)
$\mathrm{CH}_{3} \mathrm{CO}$	$21.4\left(\mathrm{CH}_{3}\right)$	$2.01(3 \mathrm{H}, \mathrm{s})$			
$\mathrm{CH}_{3} \mathrm{CO}$	171.0 (C)				

${ }^{\text {a }}{ }^{13} \mathrm{C}$ NMR: 125 MHz for 1, 100 MHz for $\mathbf{2 .}^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}$: 500 MHz for 1, 400 MHz for $\mathbf{2}$. J in Hz . Assignments of the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ signals were made on the basis of HMQC.

Figure 2. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlations (bold lines) and key HMBC correlations (broken arrows) of compound 1.

Figure 3. NOE correlations of compound $\mathbf{1}$.
correlations between $\mathrm{H}-1$ and $\mathrm{H}-14, \mathrm{H}-2 \beta[2.42(\mathrm{br} \mathrm{d})]$ and $\mathrm{H}-14, \mathrm{H}-6$ and $\mathrm{H}-14, \mathrm{H}-7$ and $\mathrm{H}-14, \mathrm{H}-8 \beta$ [1.87 (qd)] and $\mathrm{H}-14, \mathrm{H}-6$ and $\mathrm{H}-12$, and $\mathrm{H}-7$ and $\mathrm{H}-12$ exhibited that these protons orient to the same side. On the other hand, NOEs between $\mathrm{H}-5$ and $\mathrm{H}-13, \mathrm{H}-13$ and $\mathrm{H}-8 \alpha$ [1.48 (m)], $\mathrm{H}-5$ and $\mathrm{H}-9 \alpha[1.15(\mathrm{~m})$], and $\mathrm{H}-9 \alpha$ and $\mathrm{H}-13$ indicated these protons reside on the opposite side.
The molecular formula of compound $\mathbf{2}$ was found to be $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ by HREIMS and ${ }^{13} \mathrm{C}$ NMR data. The IR spectrum showed an absorption at $3381 \mathrm{~cm}^{-1}$ due to a hydroxyl group. The NMR spectra (Table 1) were very similar to those of $\mathbf{1}$ except for the lack of the acetyl signal as well as

Figure 4. $\delta \Delta$ values (ppm) for 2NMA esters of compound $\mathbf{2}$.
the high-field shift of H-1 [3.42 (1H, br d, J = 2.7 Hz$)]$ and $\mathrm{C}-1[73.5(\mathrm{CH})]$, indicating that $\mathbf{2}$ was a desacetyl congener of $\mathbf{1}$. This was confirmed by chemical conversion. Treatment of $\mathbf{2}$ with acetic anhydride in pyridine afforded the corresponding acetate, the ${ }^{1}$ H NMR data of which were identical to those of $\mathbf{1}$. The optical rotation of the acetate ($\left.[\alpha]_{D}+19^{\circ}\right)$ of $\mathbf{2}$ was also almost identical to that of $\mathbf{1}\left([\alpha]_{D}+21^{\circ}\right)$. The absolute configuration of $\mathbf{2}$ was determined on the basis of the modified M osher's method. ${ }^{10,11}$ Esterification of $\mathbf{2}$ with (R)-methoxy(2-naphthyl)acetic acid (2NMA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochl oride (EDC) and 4-(dimethyl-amino)pyridine (DMAP) gave the (R)-2NMA ester 7. Similar esterification of 2 with (S)-2NMA gave the (S)-2NMA ester 8. After measuring the ${ }^{1} \mathrm{H}$ NMR spectra of 7 and 8 , the $\delta \Delta$ value ($\delta \Delta=\delta_{\mathrm{R}}$ ester $-\delta_{\mathrm{S}}$ ester) $)$ for each proton was calculated and is summarized in Figure 4, indicating the S configuration at C-1. These findings conduded the absolute configuration of $\mathbf{2}$ (and $\mathbf{1}$) to be assigned as 1S, 5S, 6S, 7S, and 10R.

Compounds $\mathbf{1}$ and $\mathbf{2}$ are relatively rare maaliane-type sesquiterpenoids exemplified by maaliol ${ }^{12}$ isolated from the plant Canarium samonense. It is of interest that compounds $\mathbf{1}$ and $\mathbf{2}$ have the opposite absolute configurations at the C-6, -7 , and -10 positions compared to those of maaliol.

The molecular formula of compound $\mathbf{3}$ was found to be $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ by HREIMS and ${ }^{13} \mathrm{C}$ NMR data. All carbons appeared in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ (Table 2). The DEPT spectrum showed three methyls, four sp^{3} methylenes, four sp^{3} methines, two sp^{3} quaternary carbons, one sp^{2} methylene, and one sp^{2} quaternary carbon. The presence of a tertiary hydroxyl group was indicated by the IR

Table 2. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{3}$ and $\mathbf{4}$ in $\mathrm{CDCl}_{3}{ }^{\mathrm{a}}$

no.	3		no.	4	
	$\delta_{\text {c }}$	δ_{H}		$\delta_{\text {c }}$	δ_{H}
1	56.5 (CH)	1.86 (1H, td, 6.4, 13.0)	1	57.9 (CH)	2.72 (1H, ddd, 7.9, 8.4, 11.2)
2	$26.0\left(\mathrm{CH}_{2}\right)$	1.75 (2H, m)	2	$21.0\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.50 \text { (1H, tdd, 7.9. 8.4, 13.2) } \\ & 2.31 \text { (1H. dddd, 5.9, } 7.9, \\ & 8.4,13.2) \end{aligned}$
3	$29.7\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.25(1 \mathrm{H}, \mathrm{~m}) \\ & 2.49(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	3	$40.9\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.68 \text { (1H, ddd, 5.9, 7.9, 12.6) } \\ & 1.76 \text { (1H, td, } 7.9,12.6) \end{aligned}$
4	157.6 (C)		4	80.1 (C)	
5	42.3 (CH)	2.50 (1H, m)	5	49.6 (CH)	1.39 (1H, t, 11.2)
6	28.3 (CH)	0.34 (1H, t, 9.0)	6	26.6 (CH)	0.68 (1H, dd, 9.4, 11.2)
7	28.4 (CH)	0.63 (1H, ddd, 6.1, 9.0, 11.2)	7	26.3 (CH)	0.89 (1H, ddd, 6.2, 9.4, 12.5)
8	$19.2\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.43(1 \mathrm{H}, \mathrm{dt}, 2.2,11.2) \\ & 1.67(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	8	$20.2\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.10 \text { (1H, dtd, 1.6, 12.5, 14.9) } \\ & 2.05 \text { (1H, dtd, 2.6, 6.2, 14.9) } \end{aligned}$
9	$38.9\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.62(1 \mathrm{H}, \mathrm{br} \text { dd, 6.2, 13.7) } \\ & 1.77(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	9	$44.0\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.39(1 \mathrm{H}, \mathrm{dt}, 2.6,12.5) \\ & 2.51(1 \mathrm{H}, \mathrm{ddd}, 1.6,6.2,12.5) \end{aligned}$
10	74.7 (C)		10	211.2 (C)	
11	19.1 (C)		11	18.8 (C)	
12	$29.2\left(\mathrm{CH}_{3}\right)$	1.03 (3H, s)	12	$28.7\left(\mathrm{CH}_{3}\right)$	1.11 (3H, s)
13	$16.1\left(\mathrm{CH}_{3}\right)$	1.11 (3H, s)	13	$16.1\left(\mathrm{CH}_{3}\right)$	1.03 (3H, s)
14	$31.4\left(\mathrm{CH}_{3}\right)$	1.25 (3H, s)	14	$23.7\left(\mathrm{CH}_{3}\right)$	1.29 (3H, s)
15	$103.2\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 4.66(1 \mathrm{H}, \mathrm{br} \text { s) } \\ & 4.74(1 \mathrm{H}, \mathrm{br} \text { s) } \end{aligned}$			

${ }^{\text {a }}{ }^{13} \mathrm{C}$ NMR: 125 MHz , ${ }^{1 \mathrm{H}}$ NMR: 500 MHz . J in Hz. Assignments of the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ signals were made based on HMQC.
absorption at $3381 \mathrm{~cm}^{-1}$ and ${ }^{13} \mathrm{C}$ signal at $\delta 74.7$ (C, C-10). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ (Table 2) also disclosed two olefinic protons due to a terminal methylene at $\delta 4.66$ (1H, br s, H-15) and 4.74 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-15$) and two cyclopropyl methine protons at $\delta 0.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-6)$ and 0.63 (1 H, ddd, J $=6.1,9.0,11.2 \mathrm{~Hz}, \mathrm{H}-7$). These spectral data, coupled with the degrees of unsaturation (four), suggested that compound $\mathbf{3}$ was a tricyclic sesquiterpenoid with a tertiary hydroxyl group.

After direct ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ correlations were established from the HMQC spectrum, the gross structure of $\mathbf{3}$ was elucidated on the basis of the analysis of ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY and HMBC spectra (Figure 5). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed sequences of the correlations from $\mathrm{H}-2$ [1.75 (2 H , $\mathrm{m})$] to $\mathrm{H}-3[2.25(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{m})]$ and from $\mathrm{H}-1[1.86$ $(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.4,13.0 \mathrm{~Hz})$] to $\mathrm{H}-9[1.62(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, \mathrm{~J}=6.2$, $13.7 \mathrm{~Hz}), 1.77(1 \mathrm{H}, \mathrm{m})$], as depicted by the bold lines in Figure 5. The HMBC correlation from H-1 to C-2 [26.0 $\left(\mathrm{CH}_{2}\right)$] indi cated the connectivity between $\mathrm{C}-1$ and $\mathrm{C}-2$. The location of theterminal methylene group between C-3 and $\mathrm{C}-5$ was demonstrated by the HMBC correlations from $\mathrm{H}-15$ to $\mathrm{C}-3\left[29.7\left(\mathrm{CH}_{2}\right)\right]$ and $\mathrm{C}-5[42.3(\mathrm{CH})]$. The presence of a dimethylcydopropyl group at C-6 and C-7 was exhibited by the HMBC correlations from $\mathrm{H}-13[1.11(3 \mathrm{H}, \mathrm{s})]$ to $\mathrm{C}-6[28.3(\mathrm{CH})]$ and $\mathrm{C}-11[19.1(\mathrm{C})]$ and from $\mathrm{H}-12$ [1.03 $(3 \mathrm{H}, \mathrm{s})$] to $\mathrm{C}-6$ and $\mathrm{C}-11$. Finally, the connections between $\mathrm{C}-1$ and $\mathrm{C}-10$ bearing the tertiary hydroxyl group, $\mathrm{C}-10$ and $\mathrm{C}-14$, and $\mathrm{C}-10$ and $\mathrm{C}-9$ were indicated by the HMBC correlations from H-14 [1.25 (3H, s)] to C-1 [56.5 (CH)], C-10, and C-9 [38.9 (CH_{2})].

The relative configurations of the five successive chiral centers at C-10, C-1, C-5, C-6, and C-7 in $\mathbf{3}$ were determined by the following NOE analysis. As shown in Figure 6 , NOE correlations between $\mathrm{H}-1$ and $\mathrm{H}-14, \mathrm{H}-14$ and $\mathrm{H}-6$, $\mathrm{H}-6$ and $\mathrm{H}-12$, and $\mathrm{H}-12$ and $\mathrm{H}-7$ exhibited these protons to orient in the same direction. On the other hand, the NOE correlation between $\mathrm{H}-5$ and $\mathrm{H}-13$ indicated these protons to orient in the opposite direction.

Compound $\mathbf{3}$ is an aromadendrane-type sesquiterpenoid. Although the absolute stereochemistry of $\mathbf{3}$ was not determined, the absolute configurations at C-6 and C-7 may be the same as those of compounds $\mathbf{1}$ and $\mathbf{2}$ present in the same soft coral.

Figure 5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlations (bold lines) and key HMBC correlations (broken arrows) of compounds $\mathbf{3}$ and 4.

The molecular formula of compound 4 was found to be $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ by HREIMS and ${ }^{13} \mathrm{C}$ NMR data (Table 2). The DEPT spectrum showed three methyls, four sp^{3} methylenes, four sp^{3} methines, two sp^{3} quaternary carbons, and one $s p^{2}$ quaternary carbon. The IR and ${ }^{13} \mathrm{C}$ NMR spectra indi cated the presence of a tertiary hydroxyl [IR $3440 \mathrm{~cm}^{-1}$, $\delta_{C} 80.1$ (C, C-4)] and a ketone [IR $1693 \mathrm{~cm}^{-1}, \delta_{C} 211.2$ (C, C-10)] group. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 2) disclosed signals due to three methyl protons [1.03 (3H, s, H-13), 1.11 (3H, s, H-12), 1.29 (3H, s, H-14)] and two cyclopropyl methine protons [0.68 (1H, dd, J = 9.4, 11.2 Hz, H-6), 0.89 (1 H, ddd, J $=6.2,9.4,12.5 \mathrm{~Hz}, \mathrm{H}-7$)]. These spectral data, coupled with the degrees of unsaturation (four), suggested

Table 3. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Data of Compounds 5 and $\mathbf{6}^{\mathrm{a}}$

no.	5 (in $\mathrm{C}_{6} \mathrm{D}_{6}$)		no.	6 (in CDCl_{3})	
	$\delta_{\text {c }}$	δ_{H}		δ_{C}	δ_{H}
1	147.5 (C)		1	150.0 (C)	
2	$28.2\left(\mathrm{CH}_{2}\right)$	2.46 (1H, br dd, 6.1, 13.7)	2	$26.5\left(\mathrm{CH}_{2}\right)$	2.46 (1H, dd, 10.2. 14.1)
		2.97 (1H, dd, 10.2, 13.7)			2.70 (1H, br d, 14.1)
3	125.2 (CH)	5.04 (1H, br dd, 6.1, 10.2)	3	128.4 (CH)	4.77 (1H, br d, 10.2)
4	134.9 (C)		4	131.9 (C)	
5	$37.9\left(\mathrm{CH}_{2}\right)$	1.89-1.99 (2H, m)	5	$38.5\left(\mathrm{CH}_{2}\right)$	2.02 (1H, m), 2.12 (1H, m)
6	$25.7\left(\mathrm{CH}_{2}\right)$	1.88 (1H, m)	6	$23.0\left(\mathrm{CH}_{2}\right)$	2.01 (1H, m)
		2.13-2.25 (1H, m)			2.21 (1H, br dd, 2.2, 11.0)
7	140.3 (CH)	5.50 (1H, br d, 10.4)	7	127.6 (CH)	4.96 (1H, br s)
8	138.2 (C)		8	138.6 (C)	
9	205.6 (C)		9	75.9 (CH)	4.11 (1H, t, 3.8)
10	$52.8\left(\mathrm{CH}_{2}\right)$	$2.22(1 \mathrm{H}, \mathrm{~d}, 11.1)$	10	$47.2\left(\mathrm{CH}_{2}\right)$	1.69 (2H, m)
		$3.08(1 \mathrm{H}, \mathrm{~d}, 11.1)$			
11	52.7 (C)		11	51.0 (C)	
12	$51.9(\mathrm{CH})$	2.84 (1H, br d, 7.8)	12	49.2 (CH)	2.04 (1H, m)
13	$30.9\left(\mathrm{CH}_{2}\right)$	$1.85(1 \mathrm{H}, \mathrm{qd}, 2.3,16.9)$	13	$35.6\left(\mathrm{CH}_{2}\right)$	1.99 (1H, m)
		$2.35 \text { (1H, tdd, 1.9, 7.8, 16.9) }$			2.39 (1H, ddd, 2.0, 7.9, 15.4)
14	127.9 (CH)	5.17 (1H, br s)	14	125.6 (CH)	5.38 (1H, br s)
15	$22.0\left(\mathrm{CH}_{3}\right)$	1.05 (3H, s)	15	$21.8\left(\mathrm{CH}_{3}\right)$	0.94 (3H, s)
16	$15.2\left(\mathrm{CH}_{3}\right)$	1.41 (3H, br s)	16	$15.4\left(\mathrm{CH}_{3}\right)$	1.46 (3H, br s)
17	12.3 (CH_{3})	1.72 (3H, br s)	17	$11.2\left(\mathrm{CH}_{3}\right)$	1.59 (3H, br s)
18	28.5 (CH)	1.91 (1H, m)	18	30.1 (CH)	1.74 (1H, m)
19	$18.2\left(\mathrm{CH}_{3}\right)$	0.75 (3H, d, 6.6)	19	$22.3\left(\mathrm{CH}_{3}\right)$	0.92 (3H, d, 6.6)
20	$22.8\left(\mathrm{CH}_{3}\right)$	1.02 (3H, d, 6.8)	20	$22.9\left(\mathrm{CH}_{3}\right)$	1.05 (3H, d, 6.6)

${ }^{\text {a }}{ }^{13} \mathrm{C}$ NMR: 125 MHz for $5,100 \mathrm{MHz}$ for $\mathbf{6 .}{ }^{1} \mathrm{H}$ NMR: 500 MHz for $5,400 \mathrm{MHz}$ for 6 . J in Hz. Assignments of the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ signals were made on the basis of HMQC.

Figure 6. NOE correlations of compounds 3 and $\mathbf{4}$
that compound $\mathbf{4}$ was a tricyclic norsesquiterpenoid ketone with a tertiary hydroxyl group.
After assignments of all the direct ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ bondings were made based on HMQC analysis, the gross structure of $\mathbf{4}$ was determined by ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY and HMBC analysis (Figure5). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed a sequence of correlations from H-3 [1.68 (1H, ddd, J = 5.9, 7.9, 12.6 $\mathrm{Hz}), 1.76(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.9,12.6, \mathrm{~Hz})]$ to $\mathrm{H}-9[2.39(1 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=2.6,12.5 \mathrm{~Hz}), 2.51(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.6,6.2,12.5 \mathrm{~Hz})$, as depicted by the bold lines in Figure 5. The HMBC correlations from $\mathrm{H}-3$ to $\mathrm{C}-4$ bearing the tertiary hydroxyl group,
from H-5 [1.39 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.2 \mathrm{~Hz}$)] to C-4, and from H-14 to $\mathrm{C}-4$ indicated the location of the quaternary carbon (C-4) bearing hydroxyl and methyl groups between C-3 and C-5. The presence of a dimethylcyclopropyl group at C-6 and $\mathrm{C}-7$ was exhibited by the HMBC correlations from $\mathrm{H}-6$ to $\mathrm{C}-11[18.8(\mathrm{C})]$ and $\mathrm{C}-13$ [16.1 (CH_{3})], from $\mathrm{H}-7$ to $\mathrm{C}-13$, from $\mathrm{H}-13$ to $\mathrm{C}-11$ and $\mathrm{C}-12$ [28.7 $\left(\mathrm{CH}_{3}\right)$], and from $\mathrm{H}-12$ to C-11 and C-6 [26.6 (CH)]. The location of the ketone group ($\mathrm{C}-10$) between $\mathrm{C}-1$ and $\mathrm{C}-9$ was indicated by the correlations from $\mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-5, \mathrm{H}-8$, and $\mathrm{H}-9$ to $\mathrm{C}-10$.
The relative configurations of the chiral centers at C-1, C-4, C-5, C-6, and C-7 in 4 were determined by the following NOE analysis. As depicted in Figure 6, the NOE correlation between $\mathrm{H}-1$ and $\mathrm{H}-14, \mathrm{H}-14$ and $\mathrm{H}-6, \mathrm{H}-6$ and $\mathrm{H}-12$, and $\mathrm{H}-12$ and $\mathrm{H}-7$ exhibited these protons to orient in the same direction. On the other hand, the NOE correlation between $\mathrm{H}-5$ and $\mathrm{H}-13$ indi cated these protons to orient in the opposite direction.
Compound $\mathbf{4}$ is the first natural sesquiterpenoid having a noraromadendrane skeleton. Both enantiomers of $\mathbf{4}$ were previously reported as synthetic intermediates for the synthesis of sesquiterpenoids. ${ }^{13-15}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 4 were identical with those of the synthetic intermediate ${ }^{15}$ prepared from (+)-aromadendrene. However, the sign of the optical rotation ($[\alpha]_{D}-21.3^{\circ}$) for $\mathbf{4}$ was shown to be opposite of that for the synthetic intermediate ($[\alpha]_{D}+21.3^{\circ}$). Thus, the absolute configuration of 4 was assigned as $1 \mathrm{~S}, 4 \mathrm{R}, 5 \mathrm{R}, 6 \mathrm{~S}$, and 7 S .
The molecular formula of compound $\mathbf{5}$ was found to be $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}$ by HREIMS and ${ }^{13} \mathrm{C}$ NMR data (Table 3)..16 The DEPT spectrum showed five methyls, five sp^{3} methylenes, two sp^{3} methines, one sp^{3} quaternary carbon, three sp^{2} methines, and four sp^{2} quaternary carbons. The presence of a conjugated enone group was indi cated by the UV [234 $\mathrm{nm}(\epsilon 5600)$] and IR ($1656 \mathrm{~cm}^{-1}$) absorptions and by the ${ }^{13} \mathrm{C}$ signal at $\delta 205.5$ (C, C-9). The ${ }^{1 \mathrm{H}}$ NMR spectrum disclosed three olefinic protons due to trisubstituted olefins at $\delta 5.04(1 \mathrm{H}, \mathrm{br}$ dd, $\mathrm{J}=6.1,10.2 \mathrm{~Hz}, \mathrm{H}-3), 5.50(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\mathrm{J}=10.4 \mathrm{~Hz}, \mathrm{H}-7$), and 5.17 (1 H, br s, H-14). These spectral data, coupled with the degrees of unsaturation (six),

Figure 7. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlations (bold lines) and key HMBC correlations (broken arrows) of compounds 5 and 6.
suggested that compound $\mathbf{5}$ was a bicyclic diterpenoid with a conjugated enone group.

After assignments of all the direct ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ bondings were made based on the HMQC analysis, the gross structure of 5 was determined by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC analysis (Figure 7). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum reveal ed sequences of the correlations depicted by the bold lines in Figure 7. The HMBC correlations from H-2 [2.97 (1H, dd, J = 10.2, $13.7 \mathrm{~Hz})$] to $\mathrm{C}-1$ [147.5 (C)] and C-14 [127.9 (CH)] indicated the connectivity between $\mathrm{C}-1$ and $\mathrm{C}-2$. The connection between C-4 and C-5 was indicated by the HMBC correlation from H-16 [1.41 (3H, br s)] to C-5 [37.9 $\left.\left(\mathrm{CH}_{2}\right)\right]$. The presence of a methyl group $(\mathrm{H}-17)$ on the α position of the conjugated enone was demonstrated by the correlations from H-17 [1.72 (3H, br s)] to C-7 [140.3 (CH)], C-8 [138.2 (C)], and C-9. The HMBC correlation from $\mathrm{H}-10[3.08$ (1H, d, J $=11.1 \mathrm{~Hz}$)] to C-9 [205.6 (C)] indicated the connectivity between $\mathrm{C}-10$ and C-9. Finally, the HMBC correlations from $\mathrm{H}-10$ to $\mathrm{C}-11[52.7$ (C)], from $\mathrm{H}-15[1.05(3 \mathrm{H}, \mathrm{s})]$ to $\mathrm{C}-11$ and $\mathrm{C}-1$, from $\mathrm{H}-2$ to $\mathrm{C}-11$, from $\mathrm{H}-18$ [1.91 (1H, m)] to C-11, and from $\mathrm{H}-14$ [5.17 (1H, br s)] to C-11 revealed connectivities around the angular quaternary carbon at C-11.

The stereochemistry of the two trisubstituted olefins in 5 was determined by the NOE analysis. As shown in Figure 8, the NOE correlation between $\mathrm{H}-2$ and $\mathrm{H}-16$ indicated a 3E configuration, and that between $\mathrm{H}-6$ and $\mathrm{H}-17$ a 7 E configuration. The relative configurations of the two chiral centers at C-11 and C-12 were also determined by NOE analysis. The NOE correlation between the angular methyl proton (H-15) and the methine proton (H-18) demonstrated a cis configuration between the methyl at C-11 and the isopropyl at C-12. The structure of 5 except for the absolute stereochemistry was confirmed by X-ray crystallographic analysis on a single crystal of $\mathbf{5}$. The result of the X-ray analysis is shown in Figure 9.
The molecular formula of compound 6 was found to be $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}$ by HREIMS and ${ }^{13} \mathrm{C}$ NMR data. TheIR spectrum showed an absorption at $3417 \mathrm{~cm}^{-1}$ due to a hydroxyl

5

6

Figure 8. NOE correlations of compounds 5 and 6.

Figure 9. Perspective view (ORTEP) of the molecule of compound $\mathbf{5}$.
group. The NMR spectrum (Table 3) indicated the presence of a secondary hydroxyl group: $\delta_{\mathrm{H}} 4.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}$, H-9), $\delta_{\mathrm{C}} 75.9$ (CH, C-9). The ${ }^{1} \mathrm{H}$ NMR spectrum disclosed three olefinic protons due to trisubstituted olefins at 4.77 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}, \mathrm{H}-3$), 4.96 (1 H , br s, $\mathrm{H}-7$), and 5.38 (1H, br s, H-14). The NMR spectra of 6 were very similar to those of 5 except for the lack of the carbonyl signal and appearance of the signal due to the secondary hydroxyl group, indicating that $\mathbf{6}$ was a corresponding alcohol of the ketone 5. This was confirmed by chemical conversion. Oxidation of 6 with Dess-Martin periodinane afforded a conjugated enone, the NMR as well as optical rotation data of which were identical with those of compound 5.

The relative configuration at C-9 bearing a secondary hydroxyl group was deduced on the basis of the NOE correlations and analysis of conformation of 6. The NOE correlations between $\mathrm{H}-2 \beta$ and $\mathrm{H}-16, \mathrm{H}-16$ and $\mathrm{H}-17, \mathrm{H}-17$ and $\mathrm{H}-6 \beta, \mathrm{H}-6 \alpha$ and $\mathrm{H}-3$, and $\mathrm{H}-2 \beta$ and $\mathrm{H}-15$ demonstrated the conformation from $\mathrm{C}-2$ to $\mathrm{C}-9$ as depicted in Figure 8. The NOE correlations between $\mathrm{H}-9$ and $\mathrm{H}-12$, and $\mathrm{H}-9$ and $\mathrm{H}-7$, thus indicated the rel ative configuration at C-9 (9R*).
The absolute configuration of 6 was determined on the basis of the modified Mosher's method. (R)- and (S)-2NMA esters 9 and $\mathbf{1 0}$ were prepared from $\mathbf{6}$ by a method similar

Figure 10. $\delta \Delta$ values (ppm) for 2 NMA esters of compound 6.
to that used in the case of $\mathbf{2}$. The $\delta \Delta$ values summarized in Figure 10 indicated the R configuration at C-9. These findings concluded the absolute configuration of 6 and 5 to be assigned as 9R, 11S, 12S for $\mathbf{6}$ and 11S and 12S for 5.

Compounds 5 and 6 are the rare neodolabellane-type diterpenoids such as neodolabellin ${ }^{17}$ from Clavularia koellikeri and neodolabellenol ${ }^{18}$ from Clavularia inflata. Compound 6 exhibited modest growth-inhibitory activity in vitro against lung cancer ($\mathrm{NCI}-\mathrm{H} 522, \mathrm{GI}_{50} 5.2 \mu \mathrm{~g} / \mathrm{mL}$), melanoma (LOX-IMVI, GI $504.9 \mu \mathrm{~g} / \mathrm{mL}$), stomach cancer (MKN74, $\mathrm{Gl}_{50} 5.2 \mu \mathrm{~g} / \mathrm{mL}$), and central nervous system cancer (SF-539 and SNB75, GI 50 each $4.9 \mu \mathrm{~g} / \mathrm{mL}$) cells, evaluated in theJ apanese Foundation for Cancer Research 39 cell line assay. ${ }^{19}$

Experimental Section

General Experimental Procedures. Optical rotations were measured with a J ASCO DIP-370 automatic polarimeter. IR spectra were recorded with a Perkin-EImer FT-IR 1600 spectrophotometer and UV spectra with a JASCO V-520 spectrophotometer. All NMR spectra were recorded with a Bruker DRX-500 (${ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz}$) or DPX-400 $\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100 \mathrm{MHz}\right.$) spectrometer. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, NOESY, HMQC, and HMBC spectra were measured using standard Bruker pulse sequences. Chemical shifts are given on a $\delta(\mathrm{ppm})$ scale with $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}, 7.26 \mathrm{ppm}\right)$ and $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}\right.$, $77.0 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{H}_{6}\left({ }^{1} \mathrm{H}, 7.20 \mathrm{ppm}\right)$ and $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{13} \mathrm{C}, 128.0 \mathrm{ppm}\right)$ as the internal standard. Mass spectra were taken with a Micromass Auto Spec spectrometer. Column chromatography was carried out on Merck silica gel 60 (70-230 mesh), and flash col umn chromatography was performed on Merck silica gel 60 (230-400 mesh). Medium-pressure liquid chromatography (MPLC) was carried out with a KHLC-201-43 (Kusano) apparatus using a CIG prepack column (silica gel, CPS-HS-221-05, for normal-phase and ODS silica gel, CPO-HS-22120, for reversed-phase). HPLC was conducted with a YMCPack SIL-06 column (silica gel, SH-043-5-06, for normal-phase) and a YMC-Pack ODS-AM column (ODS silica gel, SH-3435AM, for reversed-phase).

Animal and Material. The soft coral Clavularia kodlikeri (order Stolonifera, family Clavularidae) was collected from a coral reef off Ishigaki Island, Okinawa Prefecture, J apan, in J une 1997, at a depth of 1-2 m. A voucher specimen (No. SC-97-1) has been deposited at Tokyo University of Pharmacy and Life Science, Tokyo, J apan.

Extraction and Isolation. Wet specimens (5.4 kg) were extracted with MeOH . The MeOH extract (237 g) was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$ to obtain an EtOAc-soluble portion (71.4 g). An aliquot of the EtOAc-soluble portion (39.4 g) was chromatographed on a silica gel column. Stepwise elution with hexane $(2000 \mathrm{~mL})$, hexane-EtOAc (2:1, 2000 mL), EtOAc (2000 mL), and $\mathrm{MeOH}(2000 \mathrm{~mL}$) afforded four fractions. The second fraction [22.3 g, el uted with hexane-EtOAc (2:1)] was further chromatographed on a silica gel column by stepwise elution with hexane, hexane-EtOAc (10:1 and 4:1), and EtOAc to afford four fractions (fractions I-IV). Silica gel column chromatography of fraction II [11.7 g, eluted with
hexane-EtOAc (10:1)] afforded nine fractions (fractions A-I) by stepwise elution with hexane-EtOAc (15:1 and 25:1).

Separation and purification of fraction $\mathrm{G}(2.12 \mathrm{~g})$ using flash silica gel column chromatography [eluted with hexane-EtOAc (30:1)] and MPLC (reversed-phase, eluted with acetonitrile) afforded compounds $\mathbf{1}(2.3 \mathrm{mg})$ and $\mathbf{5}(29 \mathrm{mg})$. From fraction I (2.59 g), compound $\mathbf{2}$ (12.4 mg) was isolated along with the known diterpenoids (-)-trans-cembranolide (75 mg$)^{9}$ and neodolabellenol (144 mg$)^{18}$ by silica gel column chromatography [hexane-EtOAc (7:1) as an eluent], MPLC [normal phase, hexane-EtOAc (10:1) as an eluent], and HPLC [normal phase, hexane-EtOAc (10:1) as an eluent, and then reversed-phase, acetonitrile $-\mathrm{H}_{2} \mathrm{O}$ (95:5) as an eluent]. Similar separation and purification of fraction $\mathrm{H}(0.47 \mathrm{~g})$ using flash silica gel col umn chromatography [hexane-EtOAc (15:1) as an eluent], MPLC [(normal phase, hexane-EtOAc (15:1) as an eluent], and HPLC (reversed-phase, acetonitrile as an eluent) afforded compounds $3(2.3 \mathrm{mg})$ and $6(20 \mathrm{mg})$.

From a portion $(2.58 \mathrm{~g})$ of fraction III [3.36 g , eluted with hexane-EtOAc (4:1)], silica gel column chromatography (nor-mal-phase) was conducted three times by elution with a hexane-EtOAc mixture to afford crude compound 4, which was purified by reversed-phase column chromatography by elution with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (75:25) to afford compound 4 (2.9 mg).

Compound 1: colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}+21.9^{\circ}\left(\mathrm{c} 0.08, \mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}$ (film) 1732, $1245 \mathrm{~cm}^{-1,}{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR, see Table 1 ; HREIMS m/z 262.1958 [cal cd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}, 262.1933$].

Compound 2: col orless oil; $[\alpha]^{25} \mathrm{D}-3.8^{\circ}\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}$ (film) $3380 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR, see Table 1; HREIMS $\mathrm{m} / \mathrm{z} 220.1824$ [cal cd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}, 220.1827$].

Compound 3: col orless oil; $[\alpha]^{25} \mathrm{D}+7.1^{\circ}\left(\mathrm{C} 0.21, \mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}$ (film) $3381 \mathrm{~cm}^{-1}$; ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR, see Table 2; HREIMS $\mathrm{m} / \mathrm{z} 220.1835$ [calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}, 220.1827$].

Compound 4: colorless oil; $[\alpha]^{25} \mathrm{D}-21.3^{\circ}$ (c $0.13, \mathrm{CHCl}_{3}$); IR $v_{\text {max }}$ (film) 3440, $1693 \mathrm{~cm}^{-1}$; ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR, see Table 2; HREIMS m/z 222.1619 [calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$, 220.1620].

Compound 5: colorless needles; $[\alpha]^{25} \mathrm{D}+153^{\circ}$ (c 0.18 , CHCl_{3}); UV $\lambda_{\text {max }}(\mathrm{EtOH}) 234 \mathrm{~nm}(\epsilon 5600)$; IR $v_{\text {max }}$ (film) 1656 $\mathrm{cm}^{-1}{ }^{13}{ }^{13} \mathrm{C}$ and ${ }^{1}{ }^{1} \mathrm{H}$ NMR, see Table 3; HREIMS m/z 286.2295 [calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}, 286.2297$].

Compound 6: colorless plates; $[\alpha]^{25}{ }_{\mathrm{D}}+131^{\circ}\left(\mathrm{c} 0.43, \mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}$ (film) $3417 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR, see Table 3; HREIMS m/z 288.2449 [calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}, 288.2453$].

Esterification of $\mathbf{2}$ with 2NMA. To a solution of $\mathbf{2}$ (2.2 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 mL) were added successively (R)-2NMA $(2.2 \mathrm{mg})$, EDC hydrochloride (5.0 mg), and DMAP (5.0 mg). The mixture was stirred for 2.5 h at room temperature under an argon atmosphere and was concentrated under reduced pressure. The residue was partitioned between ether and $\mathrm{H}_{2} \mathrm{O}$. The ethereal layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [hexane-EtOAc (4:1) as an eluant] to give (R)-2NMA ester 7 (3.3 mg). Similar esterification of $\mathbf{2}$ with (S)-2NMA afforded (S)-2NMA ester 8.
(R)-2NMA ester 7: col orless viscous oil; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) 0.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-6), 0.43(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ 2.7, $8.3 \mathrm{~Hz}, \mathrm{H}-7$), 0.77 (3H, s, H-12), 0.91 (3H, s, H-13), 1.00 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3.3,9.4,12.9 \mathrm{~Hz}, \mathrm{H}-9$), 1.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 1.18 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7,12.9 \mathrm{~Hz}, \mathrm{H}-9$), $1.30(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}=9.1,15.1$ $\mathrm{Hz}, \mathrm{H}-8), 1.66(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.8 \mathrm{~Hz}, \mathrm{H}-15), 1.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5)$, $2.00(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}=18.5 \mathrm{~Hz}, \mathrm{H}-2), 2.23(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, \mathrm{~J}=2.5$, $18.5 \mathrm{~Hz}, \mathrm{H}-2), 4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 5.06$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3$).
(S)-2NMA ester 8: col orless viscous oil; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) 0.31(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.6,9.1 \mathrm{~Hz}, \mathrm{H}-7), 0.35(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=9.1 \mathrm{~Hz}, \mathrm{H}-6), 0.60(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 0.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6$, $13.6 \mathrm{~Hz}, \mathrm{H}-9), 0.74$ (3H, s, H-13), 0.79 (1 H , ddd, J = 3.6, 9.1, $13.6 \mathrm{~Hz}, \mathrm{H}-9), 0.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,15.1 \mathrm{~Hz}, \mathrm{H}-8), 0.95(3 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-14), 1.45(1 \mathrm{H}, \mathrm{br}$ dd, J $=9.1,15.1 \mathrm{~Hz}, \mathrm{H}-8), 1.75(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=0.9 \mathrm{~Hz}, \mathrm{H}-15), 1.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.12(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=18.9$ $\mathrm{Hz}, \mathrm{H}-2), 2.34(1 \mathrm{H}, \mathrm{br} d d, \mathrm{~J}=3.9,18.9 \mathrm{~Hz}, \mathrm{H}-2), 4.96(1 \mathrm{H}, \mathrm{br}$ dd, J = 8.6, $13.6 \mathrm{~Hz}, \mathrm{H}-1$), 5.24 (1 H, br s, H-3).

Oxidation of $\mathbf{6}$. To a solution of $\mathbf{6}(2.2 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added pyridine ($60 \mu \mathrm{~L}$) and Dess-Martin periodinane (5 mg), and the mixture was stirred for 20 min at room temper-
ature. The mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane-EtOAc, 10:1, as an eluent) to afford a ketone (1.3 mg): $[\alpha]^{25} \mathrm{D}+151^{\circ}$ (c $0.05, \mathrm{CHCl}_{3}$). The ${ }^{1} \mathrm{H}$ NMR data of the ketone were identical with those of 5 .

Esterification of 6 with 2NMA. Compound 6 was converted to 2NMA esters 9 and 10, respectively, by using a method similar to that in the case of compound 2.
(R)-2NMA ester 9: col orless viscous oil; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) 0.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-19), 0.92(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-15), 0.93(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-20), 1.13(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-17)$, 1.38 (3H, s, H-16), 1.61 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{a}$), 1.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18$), $1.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 1.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.6,15.5 \mathrm{~Hz}$, H-10b), 1.93 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.7,14.2 \mathrm{~Hz}, \mathrm{H}-12$), 1.98 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5), 2.38(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}=10.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}), 2.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $10.5,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.68$ (1H, br d, J $=13.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.75$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.2,9.8 \mathrm{~Hz}, \mathrm{H}-7$), 4.99 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3$), 5.20 (1 H , $\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{H}-9), 5.38(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-14) ;$ EIMS m/z $486(\mathrm{M})^{+}$.
(S)-2NMA ester 10: colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) 0.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-19), 0.84(3 \mathrm{H}$, s, H-15), 0.91 (3H, d, J = $6.4 \mathrm{~Hz}, \mathrm{H}-20$), 1.44 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-16$), $1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-17), 1.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{a}), 1.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.6$ $\mathrm{Hz}, \mathrm{H}-2 \mathrm{a}$), 1.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18$), 1.87 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.3,15.0 \mathrm{~Hz}$, $\mathrm{H}-10 \mathrm{~b}), 1.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.7,14.2 \mathrm{~Hz}, \mathrm{H}-12), 1.98(1 \mathrm{H}, \mathrm{m}$, H-5), 2.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}$), 2.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}$), 2.24 ($1 \mathrm{H}, \mathrm{br}$ d, J $=10.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}), 2.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.69$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.2,9.8 \mathrm{~Hz}$, H-7), 5.11 (1 H , br s, H-3), 5.17 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{H}-9$), 5.33 (1H, s, H-14); EIMS m/z 486 (M) ${ }^{+}$.

X-ray Crystal Structure Determination of 5. A col orless needle crystal of $\mathbf{6}$ was obtained by recrystallization from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$. A single crystal with dimensions of $0.4 \times 0.2 \times$ 0.2 mm was used for X-ray diffraction studies on a Mac Science MXC18 diffractometer employing graphite-monochromated Cu K α radiation (I.54178 Å). The structure was solved by a direct method using SIR 92^{20} in the CRYSTAN GM program system and refined by a full-matrix least-squares method using 1723 reflections [I > 3.00 (I)] for 220 parameters. The final R value is 0.058 .

Crystal Data: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}$, orthorhombic with space group $P 2_{1} 2_{1} 2_{1}$, with $a=12.549(4) \AA, b=12.467$ (5) $\AA, c=10.899$ (4) $\AA, \vee=1730(1) \AA$, and $Z=4$.

Acknowledgment. The authors express appreciation to T. Y amori, Cancer Chemotherapy Center, J apanese F ounda-
tion for Cancer Research, for conducting a bioassay of 6 and H. Fukaya, Tokyo University of Pharmacy and Life Science, for conducting X-ray crystallographic analysis.

Supporting Information Available: X-ray crystallographic data of compound $\mathbf{5}$ (Tables 4, 5, and 6). This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Kikuchi, H.; Tsukitani, Y.; I guchi, K.; Yamada, Y. Tetrahedron Lett. 1982, 23, 5171-5174.
(2) Kikuchi, H.; Tsukitani, Y.; I guchi, K.; Yamada, Y. Tetrahedron Lett. 1983, 24, 1549-1552.
(3) Iguchi, K.; Kaneta, S.; M ori, K.; Yamada, Y.; Honda, A.; Mori, Y. Tetrahedron Lett. 1985, 26, 5787-5790
(4) Nagaoka, H.; Iguchi, K.; Miyakoshi, T.; Yamada, N.; Yamada, Y. Tetrahedron Lett. 1986, 27, 223-226.
(5) Watanabe, K.; Sekine, M.; Takahashi, H.; Iguchi, K. J. Nat. Prod. 2001, 64, 1421-1425.
(6) I washima, M.;Terada, I.; Okamoto, K.; I guchi, K.J . Org. Chem. 2002, 67, 2977-2981.
(7) K obayashi, M.; Son, B. W.; Kyogoku, Y.; Kitagawa, I. Chem. Pharm. Bull. 1986, 34, 2306-2309.
(8) I washima, M.;'Matsumoto, Y.; Takahashi, H.; I guchi, K. J . Nat. Prod. 2000, 63, 1647-1652.
(9) I washima, M.; Matsumoto, Y.; Takenaka, Y.; I guchi, K.; Yamori, T. J . Nat. Prod. 2002, 65, 1441-1446.
(10) Ohtani, I.; K usumi, T.; K ashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.
(11) Kusumi, T.; Takahashi, H.; Xu, P.; Fukushima, T.; Asakawa, Y.; Hashimoto, T.; Kan, Y.; Inouye, Y. Tetrahedron Lett. 1994, 35, 43974400.
(12) Büchi, G.; Wittenau, M. S. v.; White, D. M. J . Am. Chem. Soc. 1959, 81, 1968-1980.
(13) Surburg, H.; Mondon, A. Chem. Ber. 1981, 114, 118-131.
(14) Van Lier, F. P.; Hesp, T. G. M.; van der Linde, L. M.; van der Weerdt, A. J. A. Tetrahedron Lett. 1985, 26, 2109-2110.
(15) Gijsen, H. J. M.; Wijnberg, B. P. A.; Stork, G. A.; de Groot, A. Tetrahedron 1992, 48, 2465-2476.
(16) The better ${ }^{1}$ H NMR spectrum of 5 with separated signals was obtained in $\mathrm{C}_{6} \mathrm{D}_{6}$ than in CDCl_{3}.
(17) K obayashi, M.; Son, B. W.; Fujiwara, T.; Kyogoku, Y.; Kitagawa, I. Tetrahedron Lett. 1984, 25, 5543-5546.
(18) Bowden, B. F.; Braekman, J. C.; Coll. J. C.; Mitchell, S. J. Aust. J. Chem. 1980, 33, 927-932.
(19) Yamori, T.; Matsunaga, A.; Sato, S.; Yamazaki, K.; K omi, A.; Ishizu, K.; Mita, I.; Edatsugi, H.; Matsuba, Y.; Takezawa, K .; Nakanishi, O.; Kohno, H.; Nakajima, Y.; Komatsu, H.; Andoh, T.; Tsuruo, T. Cancer Res. 1999, 59, 4042-4049.
(20) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Olidori, G. J. Appl. Crystallogr. 1994, 27, 435-439.

NP0304013

[^0]: * To whom correspondence should be addressed. Tel: +81-426-76-7273. Fax: +81-426-76-7282. E-mail: onocerin@s.toyaku.ac.jp.

